Explainable AI-Driven Quantum Deep Neural Network for Fault Location in DC Microgrids
Amir Hossein Poursaeed and
Farhad Namdari ()
Additional contact information
Amir Hossein Poursaeed: Department of Electrical Engineering, Faculty of Engineering, Lorestan University, Khorram Abad 68151-44316, Iran
Farhad Namdari: Department of Engineering, Faculty of Environment, Science, and Economy, University of Exeter, Exeter EX4 4QF, UK
Energies, 2025, vol. 18, issue 4, 1-29
Abstract:
Fault location in DC microgrids (DCMGs) is a critical challenge due to the system’s inherent complexities and the demand for high reliability in modern power systems. This study proposes an explainable artificial intelligence (XAI)-based quantum deep neural network (QDNN) framework to address fault localization challenges in DCMGs. First, voltage signals from the DCMG are collected and analyzed using high-order synchrosqueezing transform to detect traveling waves (TWs) and extract critical fault parameters such as time of arrival, magnitude, and polarity of the first and second TWs. These features are fed into the proposed QDNN model that integrates advanced learning techniques for accurate fault localization. The cumulative distance from the fault point to the bus connecting the DCMG to the power network is considered the output vector. The model uses a combination of deep learning and quantum computing techniques to extract features and improve accuracy. To ensure transparency, an XAI technique called Shapley additive explanations (SHAP) is applied, enabling system operators to identify critical fault features. The SHAP-based explainability framework plays a critical role in translating the model’s predictions into actionable insights, ensuring that the proposed solution is not only accurate but also practically implementable in real-world scenarios. The results demonstrate the QDNN framework’s superior accuracy in fault localization even in noisy environments and with high-resistance faults, independent of voltage levels and DCMG configurations, making it a robust solution for modern power systems.
Keywords: DC microgrids; fault location; quantum neural networks; explainable artificial intelligence; high-order synchrosqueezing transform; traveling waves; convolutional neural network; bidirectional long short-term memory; Shapley additive explanations; deep learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/908/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/908/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:908-:d:1590478
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().