EconPapers    
Economics at your fingertips  
 

Planning Amidst Uncertainty: Identifying Core CCS Infrastructure Robust to Storage Uncertainty

Daniel Olson and Sean Yaw ()
Additional contact information
Daniel Olson: School of Computing, Montana State University, Bozeman, MT 59717, USA
Sean Yaw: School of Computing, Montana State University, Bozeman, MT 59717, USA

Energies, 2025, vol. 18, issue 4, 1-17

Abstract: Carbon Capture and Storage (CCS) is a critical technology for reducing anthropogenic CO 2 emissions, but its large-scale deployment is complicated by uncertainties in geological storage performance. These uncertainties pose significant financial and operational risks, as underperforming storage sites can lead to costly infrastructure modifications, inefficient pipeline routing, and economic shortfalls. To address this challenge, we propose a novel optimization workflow that is based on mixed-integer linear programming and explicitly integrates probabilistic modeling of storage uncertainty into CCS infrastructure design. This workflow generates multiple infrastructure scenarios by sampling storage capacity distributions, optimally solving each scenario using a mixed-integer linear programming model, and aggregating results into a heatmap to identify core infrastructure components that have a low likelihood of underperforming. A risk index parameter is introduced to balance trade-offs between cost, CO 2 processing capacity, and risk of underperformance, allowing stakeholders to quantify and mitigate uncertainty in CCS planning. Applying this workflow to a CCS dataset from the US Department of Energy’s Carbon Utilization and Storage Partnership project reveals key insights into infrastructure resilience. Reducing the risk index from 15 % to 0 % is observed to lead to an 83.7 % reduction in CO 2 processing capacity and a 77.1 % decrease in project profit, quantifying the trade-off between risk tolerance and project performance. Furthermore, our results highlight critical breakpoints, where small adjustments in the risk index produce disproportionate shifts in infrastructure performance, providing actionable guidance for decision-makers. Unlike prior approaches that aimed to cheaply repair underperforming infrastructure, our workflow constructs robust CCS networks from the ground up, ensuring cost-effective infrastructure under storage uncertainty. These findings demonstrate the practical relevance of incorporating uncertainty-aware optimization into CCS planning, equipping decision-makers with a tool to make informed project planning decisions.

Keywords: carbon capture and storage; infrastructure design; optimization; integer linear programming; Monte Carlo simulation; heat map (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/926/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/926/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:926-:d:1591499

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:926-:d:1591499