Review of Conductive Reciprocating Liquid Metal Magnetohydrodynamic Generators
Lingzhi Zhao () and
Aiwu Peng ()
Additional contact information
Lingzhi Zhao: State Key Laboratory of High Density Electromagnetic Power and Systems, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Aiwu Peng: State Key Laboratory of High Density Electromagnetic Power and Systems, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Energies, 2025, vol. 18, issue 4, 1-19
Abstract:
Reciprocating liquid metal magnetohydrodynamic (MHD) power generation is a new MHD power generation method in which the working fluid is a single-phase liquid metal with a low melting point and high conductivity. The internal combustion stroke of automobiles, ocean waves, sound waves and other reciprocating external forces drive the liquid metal to flow back and forth in an applied magnetic field, generating single-phase alternating current (AC) energy. Reciprocating liquid metal MHD (LMMHD) power generation has the advantages of a high power density, high efficiency, a fast start and good stability, and it provides a new solution for space static nuclear power conversion, variable-stroke automobile engines, distributed power supply and ocean energy utilization. According to the mode of action of an electromagnetic field, reciprocating LMMHD generators can be divided into the inductive type and conductive type. Compared with the inductive type, the conductive type has a simple structure and is the current research hot spot. Firstly, the classification and characteristics of reciprocating LMMHD power generation are introduced. Then, the working characteristics of conductive reciprocating LMMHD (CRLMMHD) generators are analyzed. On this basis, technical key points and issues in the current research of CRLMMHD generators are elaborated. Finally, conclusions and the future research direction of CRLMMHD generators are pointed out.
Keywords: MHD power generation; LMMHD generator; conductive type (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/959/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/959/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:959-:d:1593120
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().