EconPapers    
Economics at your fingertips  
 

Research on Economic Operation of Cascade Small Hydropower Stations Within Plants Based on Refined Efficiency Models

Daohong Wei, Chunpeng Feng and Dong Liu ()
Additional contact information
Daohong Wei: College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Chunpeng Feng: College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Dong Liu: College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

Energies, 2025, vol. 18, issue 4, 1-18

Abstract: In order to enhance the overall power generation efficiency of cascade hydropower, it is essential to conduct modelling optimization of its in-plant operation. However, existing studies have devoted minimal attention to the detailed modelling of turbine operating performance curves within the in-plant economic operation model. This represents a significant challenge to the practical application of the optimization results. This study presents a refined model of a hydraulic turbine operating performance curve, which was established by combining a particle swarm optimization (PSO) algorithm and a backpropagation (BP) neural network. The model was developed using a cascade small hydropower group as an illustrative example. On this basis, an in-plant economic operation model of a cascade small hydropower group was established, which is based on the principle of ’setting electricity by water’ and has the goal of maximizing power generation. The model was optimized using a genetic algorithm, which was employed to optimize the output of the units. In order to ascertain the efficacy of the methodology proposed in this study, typical daily operational scenarios of a cascade small hydropower group were selected for comparison. The results demonstrate that, in comparison with the actual operational strategy, the proposed model and method enhance the total output by 3.38%, 2.11%, and 3.56%, respectively, across the three typical scenarios. This method enhances the efficiency of power generation within the cascade small hydropower group and demonstrates substantial engineering application value.

Keywords: hydraulic turbine; operating performance curve; PSO-BP neural network; in-plant economic operation; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/964/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/964/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:964-:d:1593210

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:964-:d:1593210