Optimal Allocation and Sizing of BESS in a Distribution Network with High PV Production Using NSGA-II and LP Optimization Methods
Biljana Trivić () and
Aleksandar Savić
Additional contact information
Biljana Trivić: University of Belgrade, School of Electrical Engineering, 73 Bulevar Kralja Aleksandra, 11000 Belgrade, Serbia
Aleksandar Savić: University of Belgrade, School of Electrical Engineering, 73 Bulevar Kralja Aleksandra, 11000 Belgrade, Serbia
Energies, 2025, vol. 18, issue 5, 1-21
Abstract:
Battery energy storage systems (BESSs) can play a significant role in overcoming the challenges in Distribution Systems (DSs) with a high level of penetration from renewable energy sources (RESs). In this paper, the goal is to determine the optimal location, size, and charging/discharging dispatches of BESSs in DSs with a high level of photovoltaic (PV) installations. The problem of the location and size of BESSs is solved with multi-criteria optimization using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The criteria of the multi-criteria optimization are minimal investment costs for BESS and improvement of the network performance index. The network performance index includes the reduction in annual losses of active energy in DSs and the minimization of voltage deviations. The dispatch of a BESS is determined using auxiliary optimization. Linear Programming (LP) is used for auxiliary optimization, with the aim of dispatching the BESS to smooth the load profile in DS. The proposed optimization method differs from previous studies because it takes in its calculations all days of the year. This was performed using the K -means clustering technique. The days of one year are classified by the level of consumption and PV production. The optimization was performed for five different levels of PV penetration (60%, 70%, 80%, 90%, and 100%) and for two scenarios: the first with one BESS and the second with two BESSs. The proposed methodology is applied to the IEEE 33 bus balanced radial distribution system. The results demonstrate that with an optimal choice of location and parameters of the BESS, significant improvement in network performance is achieved. This refers to a reduction in losses of active power, improvement of voltage profile, smoothing the load diagram, and reducing the peak load. For the scenario with one BESS and PV penetration of 100%, the reduction in daily energy losses reaches a value of up to 10% compared to the base case (case without a BESS). The reduction in peak load goes to 20%. Further, the highest voltage during the day is significantly lower in all buses compared to the base case. Similarly, the lowest voltage during the day is considerably higher. The methodology from this paper can be applied to any radial distribution network with a variable number of BESSs. The testing results confirm the effectiveness of the proposed method.
Keywords: battery energy storage system; distribution system; optimization; dispatching; clustering; network performance index; PV penetration level (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/5/1076/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/5/1076/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:5:p:1076-:d:1597580
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().