EconPapers    
Economics at your fingertips  
 

Numerical Analysis of Diesel Engine Combustion and Performance with Single-Component Surrogate Fuel

Mehedi Hassan Pranta and Haeng Muk Cho ()
Additional contact information
Mehedi Hassan Pranta: Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
Haeng Muk Cho: Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea

Energies, 2025, vol. 18, issue 5, 1-20

Abstract: Compression ignition engines are widely recognized for their reliability and efficiency, remaining essential for transportation and power generation despite the transition toward sustainable energy solutions. This study employs ANSYS Forte to analyze the combustion and performance characteristics of a direct-injection, single-cylinder, four-stroke engine fueled with an n-heptane-based diesel surrogate. The investigation considers varying SOI timings (−32.5°, −27.5°, −22.5°, and −17.5° BTDC) and EGR rates (0%, 15%, 30%, 45%, and 60%). The simulation incorporates the RNG k-ε turbulence model, the power-law combustion model, and the KH-RT spray breakup model. The results indicate that the optimal peak pressure and temperature occur at an SOI of −22.5° BTDC with 0% EGR. Advancing SOI enhances oxidation, reducing NOx and CO emissions but increasing UHC due to delayed fuel–air mixing. Higher EGR rates lower in-cylinder pressure, temperature, HRR, and NOx emissions while elevating CO and UHC levels due to oxygen depletion and incomplete combustion. These findings highlight the trade-offs between combustion efficiency and emissions, emphasizing the need for optimized SOI and EGR strategies to achieve balanced engine performance.

Keywords: IC engine; engine performance; exhaust emission; numerical analysis; FORTE (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/5/1082/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/5/1082/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:5:p:1082-:d:1597762

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1082-:d:1597762