Smart Grids in the Context of Smart Cities: A Literature Review and Gap Analysis
Nuno Souza e Silva (),
Rui Castro and
Paulo Ferrão ()
Additional contact information
Nuno Souza e Silva: Instituto Superior Técnico, R&D Nester, University of Lisbon, 1049-001 Lisbon, Portugal
Rui Castro: INESC-ID/IST, University of Lisbon, 1049-001 Lisbon, Portugal
Paulo Ferrão: IN+/IST, University of Lisbon, 1049-001 Lisbon, Portugal
Energies, 2025, vol. 18, issue 5, 1-38
Abstract:
Cities host over 50% of the world’s population and account for nearly 75% of the world’s energy consumption and 80% of the global greenhouse gas emissions. Consequently, ensuring a smart way to organize cities is paramount for the quality of life and efficiency of resource use, with emphasis on the use and management of energy, under the context of the energy trilemma, where the objectives of sustainability, security, and affordability need to be balanced. Electrification associated with the use of renewable energy generation is increasingly seen as the most efficient way to reduce the impact of energy use on GHG emissions and natural resource depletion. Electrification poses significant challenges to the development and management of the electrical infrastructure, requiring the deployment of Smart Grids, which emerge as a key development of Smart Cities. Our review targets the intersection between Smart Cities and Smart Grids. Several key components of a Smart City in the context of Smart Grids are reviewed, including elements such as metering, IoT, renewable energy sources and other distributed energy resources, grid monitoring, artificial intelligence, electric vehicles, or buildings. Case studies and pilots are reviewed, and metrics concerning existing deployments are identified. A portfolio of 16 solutions that may contribute to bringing Smart Grid solutions to the level of the city or urban settings is identified, as well as 11 gaps existing for effective and efficient deployment. We place these solutions in the context of the energy trilemma and of the Smart Grid Architecture Model. We posit that depending on the characteristics of the urban setting, including size, location, geography, a mix of economic activities, or topology, the most appropriate set of solutions can be identified, and an indicative roadmap can be built.
Keywords: urban energy systems; smart cities; renewable energy; smart grids; energy trilemma (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/5/1186/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/5/1186/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:5:p:1186-:d:1602161
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().