EconPapers    
Economics at your fingertips  
 

Evaluating Combustion Ignition, Burnout, Stability, and Intensity of Coal–Biomass Blends Within a Drop Tube Furnace Through Modelling

Garikai T. Marangwanda () and Daniel M. Madyira
Additional contact information
Garikai T. Marangwanda: Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg 2026, South Africa
Daniel M. Madyira: Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg 2026, South Africa

Energies, 2025, vol. 18, issue 6, 1-22

Abstract: This study focused on evaluating the combustion ignition, burnout, stability, and intensity of Hwange coal and Pinus sawdust blends within a drop tube furnace (DTF) through modelling. The cocombustion of coal with biomass is gaining attention as a strategy to improve fuel efficiency and reduce emissions. Hwange coal, a key energy source in Zimbabwe, produces significant emissions, while Pinus sawdust offers a renewable alternative with favourable combustion properties. Optimising cocombustion performance is highly dependent on understanding various mass- and energy-conservation-related parameters in detail, hence the motivation of this study. The fuels of interest were blended through increasing the Pinus sawdust mass percentages up to 30%. A DTF that is 2 m long and 0.07 m in diameter was modelled and validated successfully using particle residence time and temperature profiles. An increase in blending resulted in an increase in combustion intensity, as made apparent by the heat of reaction profiles, which were also shown to be dependent on the kinetic rate of the reaction between CO and O 2 to form CO 2 . The burnout rate profiles demonstrated that as blending increased, heat was released more abruptly over a short distance; hence, combustion became less stable. The burnout rate profiles were shown to be dependent on the kinetic rate of reaction between char and O 2 to form CO. The effect of DTF wall temperatures (1273, 1473, and 1673 K) was also studied, with the results showing that at a low temperature, the reaction zone was delayed to a distance of 0.8 m from the injection point, as compared to 0.4 m at 1673 K. In summary, this study demonstrated that combustion ignition, burnout, and intensity increased with the blending ratio of Pinus sawdust, whilst combustion stability decreased.

Keywords: ignition; burnout; combustion stability; combustion intensity; drop tube furnace (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1322/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1322/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1322-:d:1607560

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1322-:d:1607560