Simulation and Experimental Research on a Fluidic Oscillator with a Deflector Structure
Jiming Li,
Jianming Peng,
Dong Ge and
Guang Zhang ()
Additional contact information
Jiming Li: College of Construction Engineering, Jilin University, Changchun 130026, China
Jianming Peng: College of Construction Engineering, Jilin University, Changchun 130026, China
Dong Ge: College of Construction Engineering, Jilin University, Changchun 130026, China
Guang Zhang: College of Construction Engineering, Jilin University, Changchun 130026, China
Energies, 2025, vol. 18, issue 6, 1-16
Abstract:
In the exploitation of deep geothermal energy from hot dry rock (HDR) reservoirs, traditional drilling methodologies exhibit a retarded penetration rate, posing a significant impediment to efficient energy extraction. The fluidic DTH hammer is recognized as a drilling method with potential in hard formations. However, a low energy utilization was observed due to the substantial fluid loss in the fluidic oscillator (the control component of a fluidic hammer). In order to reduce the energy loss and improve the performance of fluidic hammers, a fluidic oscillator with a deflector structure is proposed in this paper. Utilizing Computational Fluid Dynamics (CFD) simulations, the optimal structural parameters for the deflector structure have been delineated, with dimensions specified as follows: a = 13.5 mm; b = 2.0 mm; and c = 2.2 mm. Subsequently, the flow field and the performance were observed. The maximum flow recovery of the output channel of the deflector structure increased by 9.1% in the backward stroke and 3.6% in the forward stroke. Moreover, the locking vortex range is expanded upward, which improves the wall attachment stability of the main jet. Finally, to substantiate the numerical findings and evaluate the practical efficacy of the deflector structure, a series of bench tests were conducted. According to the results, compared with the original structure, the average impact frequency can be increased by 5.8%, the single average impact energy increased by 7.5%, and the output power increased by 13.8%.
Keywords: fluidic DTH hammer; fluidic oscillator; main jet switching; vortex identification; deflector (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1336/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1336/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1336-:d:1608233
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().