Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
Alessandro Lima (),
Jorge Torrubia,
Alicia Valero and
Antonio Valero ()
Additional contact information
Alessandro Lima: Research Institute for Energy and Resource Efficiency of Aragón (ENERGAIA), University of Zaragoza, Campus Río Ebro, Ed. CIRCE, c/ Mariano Esquillor Gómez 15, 50018 Zaragoza, Spain
Jorge Torrubia: Research Institute for Energy and Resource Efficiency of Aragón (ENERGAIA), University of Zaragoza, Campus Río Ebro, Ed. CIRCE, c/ Mariano Esquillor Gómez 15, 50018 Zaragoza, Spain
Alicia Valero: Research Institute for Energy and Resource Efficiency of Aragón (ENERGAIA), University of Zaragoza, Campus Río Ebro, Ed. CIRCE, c/ Mariano Esquillor Gómez 15, 50018 Zaragoza, Spain
Antonio Valero: Research Institute for Energy and Resource Efficiency of Aragón (ENERGAIA), University of Zaragoza, Campus Río Ebro, Ed. CIRCE, c/ Mariano Esquillor Gómez 15, 50018 Zaragoza, Spain
Energies, 2025, vol. 18, issue 6, 1-24
Abstract:
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO 2 emissions. However, an electrolyzer’s infrastructure relies on scarce and energy-intensive metals such as platinum, palladium, iridium (PGM), silicon, rare earth elements, and silver. Under this context, this paper explores the exergy cost, i.e., the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers, alkaline water electrolysis (AWE), proton exchange membrane (PEM), solid oxide electrolysis cells (SOEC), and anion exchange membrane (AEM), in several exergy cost electricity scenarios based on different technologies, namely hydro (HYD), wind (WIND), and solar photovoltaic (PV), as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050, for each kW of hydrogen generated, between 1.38 and 1.22 kW will be required for the SOEC-hydro combination, while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production, there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of non-renewable exergy cost in infrastructure, which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition.
Keywords: hydrogen generation; water electrolysis; electricity scenarios; cleaner production; exergy cost; renewable energy; critical raw materials (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1398/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1398/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1398-:d:1610527
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().