A Cost-Optimizing Analysis of Energy Storage Technologies and Transmission Lines for Decarbonizing the UK Power System by 2035
Liliana E. Calderon Jerez and
Mutasim Nour ()
Additional contact information
Liliana E. Calderon Jerez: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
Mutasim Nour: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
Energies, 2025, vol. 18, issue 6, 1-25
Abstract:
The UK net zero strategy aims to fully decarbonize the power system by 2035, anticipating a 40–60% increase in demand due to the growing electrification of the transport and heating sectors over the next thirteen years. This paper provides a detailed technical and economic analysis of the role of energy storage technologies and transmission lines in balancing the power system amidst large shares of intermittent renewable energy generation. The analysis is conducted using the cost-optimizing energy system modelling framework REMix, developed by the German Aerospace Center (DLR). The obtained results of multiple optimization scenarios indicate that achieving the lowest system cost, with a 73% share of electricity generated by renewable energy sources, is feasible only if planning rules in England and Wales are flexible enough to allow the construction of 53 GW of onshore wind capacity. This flexibility would enable the UK to become a net electricity exporter, assuming an electricity trading market with neighbouring countries. Depending on the scenario, 2.4–11.8 TWh of energy storage supplies an average of 11% of the electricity feed-in, with underground hydrogen storage representing more than 80% of that total capacity. In terms of storage converter capacity, the optimal mix ranges from 32 to 34 GW of lithium-ion batteries, 13 to 22 GW of adiabatic compressed air energy storage, 4 to 24 GW of underground hydrogen storage, and 6 GW of pumped hydro. Decarbonizing the UK power system by 2035 is estimated to cost $37–56 billion USD, with energy storage accounting for 38% of the total system cost. Transmission lines supply 10–17% of the total electricity feed-in, demonstrating that, when coupled with energy storage, it is possible to reduce the installed capacity of conventional power plants by increasing the utilization of remote renewable generation assets and avoiding curtailment during peak generation times.
Keywords: energy system modelling; renewable energy; energy storage integration; power transmission integration; energy scenarios (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1489/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1489/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1489-:d:1614499
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().