Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO 2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions
Byung Gyu Kang,
Ye Rim Kwon,
Ki Won Hong,
Sun Ki Kwon,
Hyeon Min Lee,
Dong Kun Song,
Ji Woong Jeon,
Do Young Jung,
Dohyun Go () and
Gu Young Cho ()
Additional contact information
Byung Gyu Kang: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Ye Rim Kwon: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Ki Won Hong: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Sun Ki Kwon: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Hyeon Min Lee: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Dong Kun Song: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Ji Woong Jeon: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Do Young Jung: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Dohyun Go: Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
Gu Young Cho: Department of Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
Energies, 2025, vol. 18, issue 6, 1-17
Abstract:
Proton exchange membrane fuel cells (PEMFCs) are pivotal to advancing sustainable hydrogen energy systems. However, their performance decreases under low-humidity conditions (relative humidity, RH 50%) due to inadequate membrane hydration. This study addresses this challenge by utilizing a sputtering process to deposit titanium dioxide (TiO 2 ) onto microporous layers (MPLs), enhancing their hydrophilicity and water management capabilities. TiO 2 intrinsic hydrophilic properties and oxygen vacancies improve water adsorption and distribution, leading to more stable PEMFC performance under reduced humidity. Electrochemical evaluations revealed that while initial resistance slightly increased, long-term stability improved significantly. The TiO 2 -coated MPL exhibited a lower performance degradation rate, with a 12.33% reduction in current density compared to 25.3% for the pristine MPL after 10 h of operation. These findings demonstrate that TiO 2 deposition effectively mitigates performance losses under low-humidity conditions, reducing the reliance on external humidification systems. This work contributes to the development of more efficient and sustainable fuel cell technologies for applications such as hydrogen-powered vehicles and distributed energy systems.
Keywords: polymer electrolyte membrane fuel cell; sputtering; titanium dioxide; microporous layer; low humidity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1525/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1525/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1525-:d:1615784
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().