Spatial Evolution and Scenario Simulation of Carbon Metabolism in Coal-Resource-Based Cities Towards Carbon Neutrality: A Case Study of Jincheng, China
Li Zhu,
Mengying Cao (),
Wenyuan Wang and
Tianyue Zhang
Additional contact information
Li Zhu: School of Architecture, Tianjin University, Tianjin 300072, China
Mengying Cao: School of Architecture, Tianjin University, Tianjin 300072, China
Wenyuan Wang: Faculty of Innovation and Design, City University of Macau, Macau 999078, China
Tianyue Zhang: School of Future Technology, Tianjin University, Tianjin 300072, China
Energies, 2025, vol. 18, issue 6, 1-20
Abstract:
As important energy suppliers in China, coal-resource-based cities are pivotal to achieving the nation’s 2060 carbon-neutrality goal. This study focused on Jincheng City, utilizing the LOW EMISSIONS ANALYSIS PLATFORM (LEAP) model to predict carbon emissions from energy consumption under various scenarios from 2020 to 2060. Then, combined with the Markov-PLUS model to map carbon emissions to land-use types, it evaluated spatial changes in carbon metabolism and analyzed carbon-transfer patterns across different land-use types. The results showed the following: (1) Across all scenarios, Jincheng’s carbon emissions exhibited an initial increase followed by a decline, with the industrial sector accounting for over 70% of total emissions. While the baseline scenario deviated from China’s carbon peaking target, the high-limit scenario achieved an early carbon peak by 2027. (2) High-negative-carbon-metabolism areas were concentrated in central urban zones and industrial parks. Notably, arable land shifted from a carbon-sink area to a carbon source area by 2060 in both the low- and high-limit scenarios. (3) In the baseline scenario, industrial and transportation land uses were the primary barriers to carbon metabolism balance. In the low-carbon scenario, the focus shifted from industrial and transportation emissions to urban construction land emissions. In the high-limit scenario, changes in urban–rural land-use relationships significantly influenced carbon metabolism balance. This study emphasizes the importance of industrial green transformation and land-use planning control to achieve carbon neutrality, and it further explores the significant impact of territorial spatial planning on the low-carbon transition of coal-resource-based cities.
Keywords: LEAP-PLUS model; land use; carbon metabolism; scenarios; coal-resource-based cities (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/6/1532/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/6/1532/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:6:p:1532-:d:1616142
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().