Systematic Optimize and Cost-Effective Design of a 100% Renewable Microgrid Hybrid System for Sustainable Rural Electrification in Khlong Ruea, Thailand
Montri Ngao-det,
Jutturit Thongpron,
Anon Namin,
Nopporn Patcharaprakiti,
Worrajak Muangjai and
Teerasak Somsak ()
Additional contact information
Montri Ngao-det: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Jutturit Thongpron: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Anon Namin: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Nopporn Patcharaprakiti: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Worrajak Muangjai: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Teerasak Somsak: Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand
Energies, 2025, vol. 18, issue 7, 1-35
Abstract:
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), and lithium-ion battery storage (264 kWh) to provide a reliable, cost-effective, and environmentally sustainable energy solution for a remote village of 306 residents. The methodology encompasses site-specific resource assessment (solar irradiance, hydro flow), load demand analysis, and techno-economic optimization, minimizing the net present cost (NPC) and cost of energy (COE) while achieving zero emissions. Simulation results indicate the optimal configuration (S1) achieves an NPC of USD 362,687 and COE of USD 0.19/kWh, with a 100% renewable fraction, outperforming the current diesel–hydro system (NPC USD 3,400,000, COE USD 1.85/kWh, 61.4% renewable). Sensitivity analysis confirms robustness against load increases (1–5%), though battery capacity and costs rise proportionally. Compared to regional microgrids, the proposed system excels in terms of sustainability and scalability, leveraging local resources effectively. The lifecycle assessment highlights the battery’s embodied emissions (13,200–39,600 kg CO 2 e), underscoring the need for recycling to enhance long-term sustainability. Aligned with Thailand’s AEDP 2018–2037 and net-zero goals, this model offers a replicable framework for rural electrification in Southeast Asia. Stakeholder engagement, including community input and EGAT funding, ensures practical implementation. The study demonstrates that fully renewable microgrids are technically feasible and economically viable, providing a blueprint for sustainable energy transitions globally.
Keywords: microgrid; photovoltaic; micro hydro; pico hydro; battery; economics; Homer Pro (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1628/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1628/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1628-:d:1619367
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().