Dual-Layer Energy Management Strategy for a Hybrid Energy Storage System to Enhance PHEV Performance
Haobin Jiang,
Yang Zhao () and
Shidian Ma
Additional contact information
Haobin Jiang: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Yang Zhao: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Shidian Ma: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Energies, 2025, vol. 18, issue 7, 1-20
Abstract:
Plug-in hybrid electric vehicles (PHEVs) typically employ batteries with relatively small capacities due to constraints on chassis space and vehicle cost. Consequently, under conditions such as acceleration and hill climbing, these vehicles often experience high-current battery discharges, which can significantly compromise the battery’s lifespan. To address this issue, this paper focuses on a plug-in hybrid passenger vehicle, introducing supercapacitors to form a hybrid energy storage system (HESS) in conjunction with the PHEV battery, and it proposes a dual-layer energy management strategy for PHEVs. First, a PHEV model is developed, and a rule-based energy management strategy is designed. By conducting simulation comparisons of the CLTC under three control rules with different thresholds, the strategy yielding the lowest fuel consumption is selected, and its battery discharge characteristics are analyzed. Subsequently, the required power parameters of the supercapacitor are calculated, and, taking chassis space constraints into account, the number and specifications of the supercapacitors are determined. Subsequently, a dual-layer energy distribution strategy for PHEVs equipped with supercapacitors is proposed. In the upper layer, an equivalent fuel consumption minimization method is applied to optimize the torque distribution between the engine and the motor, while the lower layer employs a rule-based strategy for power allocation between the battery and the supercapacitor. A proportional feedback factor is introduced for the real-time adjustment of the engine and motor torque distribution, and simulations under the CLTC are conducted to evaluate the PHEV’s torque distribution and fuel consumption. The results indicate that the dual-layer energy management strategy reduces the duration of high-current battery discharge in the supercapacitor-equipped PHEV by 73.61%, decreases the peak current by 30.76%, and lowers the overall vehicle fuel consumption by 5%. Unlike other studies, this paper analyzes and calculates the specifications, dimensions, and quantity of supercapacitors based on the available chassis space of the PHEV passenger car. The results demonstrate that the designed supercapacitor array effectively mitigates the high-current discharge of the PHEV battery, and the proposed dual-layer energy management strategy is capable of reducing the overall fuel consumption of the vehicle.
Keywords: plug-in hybrid electric vehicle; supercapacitor; dual-layer energy management strategy; equivalent consumption minimization strategy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1667/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1667/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1667-:d:1621463
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().