EconPapers    
Economics at your fingertips  
 

AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars

Mohammed Gronfula () and Khairy Sayed
Additional contact information
Mohammed Gronfula: Electrical Engineering Department, College of Engineering, Alasala Colleges, Dammam 31483, Saudi Arabia
Khairy Sayed: Electrical Engineering Department, Sohag University, Sohag 82524, Egypt

Energies, 2025, vol. 18, issue 7, 1-35

Abstract: This study presents an AI-driven energy management system (EMS) for a hybrid electric flying car, integrating multiple power sources—including solid-state batteries, Li-ion batteries, fuel cells, solar panels, and wind turbines—to optimize power distribution across various flight phases. The proposed EMS dynamically adjusts power allocation during takeoff, cruise, landing, and ground operations, ensuring optimal energy utilization while minimizing losses. A MATLAB-based simulation framework is developed to evaluate key performance metrics, including power demand, state of charge (SOC), system efficiency, and energy recovery through regenerative braking. The findings show that by optimizing renewable energy collecting, minimizing battery depletion, and dynamically controlling power sources, AI-based predictive control dramatically improves energy efficiency. While carbon footprint assessment emphasizes the environmental advantages of using renewable energy sources, SOC analysis demonstrates that regenerative braking prolongs battery life and lowers overall energy use. AI-optimized energy distribution also lowers overall operating costs while increasing reliability, according to life-cycle cost assessment (LCA), which assesses the economic sustainability of important components. Sensitivity analysis under sensor noise and environmental disturbances further validates system robustness, demonstrating that efficiency remains above 84% even under adverse conditions. These findings suggest that AI-enhanced hybrid propulsion can significantly improve the sustainability, economic feasibility, and real-world performance of future flying car systems, paving the way for intelligent, low-emission aerial transportation.

Keywords: AI-driven energy management; hybrid energy storage systems; energy optimization; system efficiency; renewable energy integration; carbon footprint reduction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1781/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1781/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1781-:d:1626562

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-03
Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1781-:d:1626562