A CFD Model for the Direct Coupling of the Combustion Process and Glass Melting Flow Simulation in Glass Furnaces
Carlo Cravero,
Davide Marsano () and
Gabriele Milanese
Additional contact information
Carlo Cravero: Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Università degli Studi di Genova, Via Montallegro 1, 16145 Genova, Italy
Davide Marsano: Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Università degli Studi di Genova, Via Montallegro 1, 16145 Genova, Italy
Gabriele Milanese: Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Università degli Studi di Genova, Via Montallegro 1, 16145 Genova, Italy
Energies, 2025, vol. 18, issue 7, 1-19
Abstract:
The objectives of reducing and increasing pollutant emissions during the glass production process also apply to the glass industry, meaning that the accurate modeling of a glass furnace is of critical strategic value. In the available literature, several CFD studies have proposed various models with different levels of complexity. Two basic aspects are shared by the existing models, limiting their accuracy and their impact on furnace design: the combustion space is usually solved with reliance on simplified models (e.g., Flamelet and global kinetic mechanisms); and the glass tank is solved separately, using an iterative approach to couple two (or more) simulated domains. This work presents the development of an innovative CFD model to overcome these limitations and to perform accurate simulations of industrial glass furnaces. The reactive flow is solved using a reduced chemical kinetic mechanism and the EDC (eddy dissipation concept) turbulence–chemistry interaction model to properly reproduce the complex combustion development. The glass bath is solved as a laminar flow with the appropriate temperature-dependent glass properties. The two domains are simulated simultaneously and thermally coupled through an interface. This procedure allows for the more accurate calculation of the heat flow and the temperature distributions on the glass bath, accounting for their subsequent influence on the glass convective motions. The simulation of an existing glass furnace, along with selected comparisons with experimental data, are presented to demonstrate the validity of the proposed model. The developed model provides a contribution that allows us to advance the wider understanding of glass furnace dynamics.
Keywords: combustion; glass furnace; CFD; coupling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1792/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1792/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1792-:d:1626957
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().