Numerical Simulation and Optimization of a Chevron-Type Corrugated Solar Air Heater
Umar Fahed Alqsair ()
Additional contact information
Umar Fahed Alqsair: Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Energies, 2025, vol. 18, issue 7, 1-18
Abstract:
In the present study, a numerical simulation and optimization combined approach is applied to investigate the thermal performance of a solar air heater (SAH). Numerical simulation of the solar air heater is performed based on computational fluid dynamics (CFDs) via ANSYS Fluent 2023R1 software. The solar air heater includes a corrugated absorber plate with a Chevron-type design. Present study was conducted in Al-Kharj, Saudi Arabia on August 15. The optimization process is used to enhance the thermal efficiency of the solar system. In the optimization process, several geometric parameters of the solar air heater, including the wave height and pitch length of the corrugated absorber plate and the height of the airflow channel under the absorber plate, have been evaluated. The wave height is between 10 and 20 mm, the pitch length is between 50 and 90 mm, and the channel height is between 70 and 90 mm. Therefore, the design of experiment (DOE) and response surface methodology (RSM) are utilized to estimate temperature rise and thermal efficiency. The thermal analysis shows that increasing the wave height, decreasing the pitch length, and shortening the channel height enhances both the temperature rise coefficient and the thermal efficiency.
Keywords: solar air heater; CFD; ANSYS Fluent; DOE; RSM; optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1821/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1821/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1821-:d:1627938
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().