Learning and Characterizing Chaotic Attractors of a Lean Premixed Combustor
Sara Navarro-Arredondo and
Jim B. W. Kok ()
Additional contact information
Sara Navarro-Arredondo: Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands
Jim B. W. Kok: Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands
Energies, 2025, vol. 18, issue 7, 1-27
Abstract:
This paper is about the characteristics of and a method to recognize the onset of limit cycle thermoacoustic oscillations in a gas turbine-like combustor with a premixed turbulent methane/air flame. Information on the measured time series data of the pressure and the OH* chemiluminescence is acquired and postprocessed. This is performed for a combustor with variation in two parameters: fuel/air equivalence ratio and combustor length. It is of prime importance to acknowledge the nonlinear dynamic nature of these instabilities. A method is studied to interpret thermoacoustic instability phenomena and assess quantitatively the transition of the combustor from a stable to an unstable regime. In this method, three-phase portraits are created on the basis of data retrieved from the measured acoustics and flame intensity in the laboratory-scale test combustor. In the path to limit cycle oscillation, the random distribution in the three-phase portrait contracts to an attractor. The phase portraits obtained when changing operating conditions, moving from the stable to the unstable regime and back, are analyzed. Subsequently, the attractor dimension is determined for quantitative analysis. On the basis of the trajectories from the stable to unstable and back in one run, a study is performed of the hysteresis dynamics in bifurcation diagrams. Finally, the onset of the instability is demonstrated to be recognized by the 0-1 criterion for chaos. The method was developed and demonstrated on a low-power atmospheric methane combustor with the aim to apply it subsequently on a high-power pressurized diesel combustor.
Keywords: thermoacoustic instabilities; nonlinear analysis; turbulent combustion; Rijke tube; chaos (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1852/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1852/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1852-:d:1629254
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().