A Model Predictive Control to Improve Grid Resilience
Joseph Young (),
David G. Wilson,
Wayne Weaver and
Rush D. Robinett
Additional contact information
Joseph Young: OptimoJoe, Houston, TX 77254, USA
David G. Wilson: Electrical Sciences, Sandia National Laboratories, Albuquerque, NM 87185, USA
Wayne Weaver: Mechanical and Aerospace Engineering, Michigan Technological University, Houghton, MI 49931, USA
Rush D. Robinett: Mechanical and Aerospace Engineering, Michigan Technological University, Houghton, MI 49931, USA
Energies, 2025, vol. 18, issue 7, 1-33
Abstract:
The following article details a model predictive control (MPC) to improve grid resilience when faced with variable generation resources. This topic is of significant interest to utility power systems where distributed intermittent energy sources will increase significantly and be relied on for electric grid ancillary services. Previous work on MPCs has focused on narrowly targeted control applications such as improving electric vehicle (EV) charging infrastructure or reducing the cost of integrating Energy Storage Systems (ESSs) into the grid. In contrast, this article develops a comprehensive treatment of the construction of an MPC tailored to electric grids and then applies it integration of intermittent energy resources. To accomplish this, the following article includes a description of a reduced order model (ROM) of an electric power grid based on a circuit model, an optimization formulation that describes the MPC, a collocation method for solving linear time-dependent differential algebraic equations (DAEs) that result from the ROM, and an overall strategy for iteratively refining the behavior of the MPC. Next, the algorithm is validated using two separate numerical experiments. First, the algorithm is compared to an existing MPC code and the results are verified by a numerically precise simulation. It is shown that this algorithm produces a control comparable to existing algorithms and the behavior of the control carefully respects the bounds specified. Second, the MPC is applied to a small nine bus system that contains a mix of turbine-spinning-machine-based and intermittent generation in order to demonstrate the algorithm’s utility for resource planning and control of intermittent resources. This study demonstrates how the MPC can be tuned to change the behavior of the control, which can then assist with the integration of intermittent resources into the grid. The emphasis throughout the paper is to provide systematic treatment of the topic and produce a novel nonlinear control compatible design framework applicable to electric grids and the control of variable resources. This differs from the more targeted application-based focus in most presentations.
Keywords: model predictive control; optimal control; power grid; microgrid; pseudospectral method; orthogonal spline collocation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/7/1865/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/7/1865/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:7:p:1865-:d:1629652
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().