Impact of Azimuth Angle on Photovoltaic Energy Production: Experimental Analysis in Loja, Ecuador
Angel Correa-Guamán,
Alex Moreno-Salazar,
Diego Paccha-Soto and
Ximena Jaramillo-Fierro ()
Additional contact information
Angel Correa-Guamán: Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
Alex Moreno-Salazar: Sección BDC Xtrim, Empresa Dismardis, RGMC+G72, Av. de los Shyris, Quito 170102, Ecuador
Diego Paccha-Soto: Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
Ximena Jaramillo-Fierro: Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
Energies, 2025, vol. 18, issue 8, 1-19
Abstract:
Efficient solar energy capture is crucial for renewable energy development, particularly in equatorial regions with consistent solar radiation. This study evaluated the impact of the azimuth angle of the solar panels on photovoltaic energy production in Loja, Ecuador. Three photovoltaic systems with east and west orientations were installed, and data were continuously collected from June 2021 to May 2022. Descriptive and comparative statistical analyses, including one-way ANOVA and Kruskal–Wallis tests, were employed to assess the differences in energy production between the systems. Additionally, an analysis of average hourly energy production was conducted to better understand diurnal variations and their relationship with energy demand. Results showed no significant differences in energy production between east- and west-oriented systems, although east-facing panels showed a slight advantage in certain months, between October and December. Seasonal variations were found to have a greater influence on energy production than orientation, suggesting that climatic factors should be prioritized when designing solar installations in equatorial areas. The findings indicate that azimuth angle is not a decisive factor for optimizing energy efficiency in Loja, Ecuador. Moreover, the diurnal analysis demonstrated a typical daily curve with midday peaks, misaligned with morning and evening demand, which could affect future design strategies.
Keywords: photovoltaic performance; solar energy optimization; seasonal variability; renewable energy systems; panel configuration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/8/1998/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/8/1998/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:8:p:1998-:d:1633748
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().