Understanding the Sustainable Hydrogen Generation Potential for the Region of Bavaria, Germany via Bio-Waste Processing Using Thermochemical Conversion Technology
Shashank Deepak Prabhu ()
Additional contact information
Shashank Deepak Prabhu: Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, An der Maxhütte 1, 92237 Sulzbach Rosenberg, Germany
Energies, 2025, vol. 18, issue 8, 1-24
Abstract:
Future decarbonization targets demand a higher penetration of renewable energy (RE) sources into the system. However, challenges such as an uneven spatial and temporal distribution of various RE sources’ potential for green electricity (GE) generation demand alternative ways to store and later utilize the generated energy. In addition to that, sustainable development goals (SDGs) highlight the need for the responsible use of resources with increased recycling and a reduction in corresponding waste generation while ensuring access to affordable, reliable, sustainable, and modern energy for all. In this paper, an attempt is made to address both the issues of biodegradable waste (BW) processing and sustainable hydrogen (SH) production through it. Thermochemical conversion technology (TCC) and, within that, especially ‘thermocatalytic reforming’ (TCR ® ) technology have been explored as options to provide viable solutions. An added advantage of decentralized hydrogen production can be envisioned here that can also contribute to regional energy security to some degree. To analyze the concept, the Bavarian region in Germany, along with open-source data for bio-waste from two main sources, namely domestic household and sewage sludge (SS), were considered. Based on that, the corresponding regional hydrogen demand coverage potential was analyzed.
Keywords: sustainable hydrogen; green hydrogen; thermochemical conversion; waste processing; sustainable energy; bio-waste processing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/8/2002/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/8/2002/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:8:p:2002-:d:1634021
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().