EconPapers    
Economics at your fingertips  
 

Optimizing Bifacial Solar Modules with Trackers: Advanced Temperature Prediction Through Symbolic Regression

Fabian Alonso Lara-Vargas, Carlos Vargas-Salgado (), Jesus Águila-León and Dácil Díaz-Bello
Additional contact information
Fabian Alonso Lara-Vargas: Programa de Ingeniería Electrónica, Grupo de Investigación ITEM, Universidad Pontificia Bolivariana Seccional Montería, Montería 230001, Colombia
Carlos Vargas-Salgado: Institute for Energetic Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
Jesus Águila-León: Departamento de Estudios del Agua y de la Energía, Universidad de Guadalajara, Guadalajara 44410, Mexico
Dácil Díaz-Bello: Institute for Energetic Engineering, Universitat Politècnica de València, 46022 Valencia, Spain

Energies, 2025, vol. 18, issue 8, 1-25

Abstract: Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R 2 ) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.

Keywords: bifacial PV module; symbolic regression; genetic algorithm; temperature prediction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/8/2019/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/8/2019/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:8:p:2019-:d:1634855

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-16
Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2019-:d:1634855