EconPapers    
Economics at your fingertips  
 

A Multi-Objective PSO-GWO Approach for Smart Grid Reconfiguration with Renewable Energy and Electric Vehicles

Tung Linh Nguyen () and Quynh Anh Nguyen
Additional contact information
Tung Linh Nguyen: Faculty of Control and Automation, Electric Power University, Ha Noi 100000, Vietnam
Quynh Anh Nguyen: Faculty of Information Technology, Electric Power University, Ha Noi 100000, Vietnam

Energies, 2025, vol. 18, issue 8, 1-15

Abstract: In the contemporary landscape of power systems, the escalating integration of renewable energy resources and electric vehicle infrastructures into distribution networks has intensified the imperative to ensure power quality, operational optimization, and system reliability. Distribution network reconfiguration emerges as a pivotal strategy to mitigate power losses, facilitate the seamless assimilation of renewable generation, and regulate the charging and discharging dynamics of EVs, thereby constituting a critical endeavor in modern electrical engineering. While the Particle Swarm Optimization algorithm is renowned for its rapid convergence and effective exploitation of solution spaces, its capacity to thoroughly explore complex search domains remains limited, particularly in multifaceted optimization challenges. Conversely, the Grey Wolf Optimization algorithm excels in global exploration, offering robust mechanisms to circumvent local optima traps. Leveraging the complementary strengths of these approaches, this study proposes a hybrid PSO-GWO framework to address the distribution network reconfiguration problem, explicitly accounting for the integration of renewable energy sources and EV systems. Empirical validation, conducted on the IEEE 33-bus test system across diverse operational scenarios, underscores the efficacy of the proposed methodology, revealing exceptional precision and dependability. Notably, the approach achieves substantial reductions in power losses during peak demand periods with distributed generation incorporation while maintaining voltage profiles within the stringent operational bounds of 0.94 to 1.0 per unit, thus ensuring stability amidst variable load conditions. Comparative analyses further demonstrate that the hybrid method surpasses conventional optimization techniques, as evidenced by enhanced convergence rates and superior objective function outcomes. These findings affirm the proposed strategy as a potent tool for advancing the resilience and efficiency of next-generation distribution networks.

Keywords: distribution network reconfiguration; Grey Wolf Optimization; particle swarm optimization; photovoltaics; electric vehicle; wind turbine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/8/2020/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/8/2020/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:8:p:2020-:d:1634869

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-16
Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2020-:d:1634869