Spatio-Temporal Adaptive Voltage Coordination Control Strategy for Distribution Networks with High Photovoltaic Penetration
Xunxun Chen,
Xiaohong Zhang,
Qingyuan Yan () and
Yanxue Li
Additional contact information
Xunxun Chen: College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China
Xiaohong Zhang: College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China
Qingyuan Yan: College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China
Yanxue Li: State Grid Integrated Energy Planning and D&R Institute Co., Ltd., Beijing 100052, China
Energies, 2025, vol. 18, issue 8, 1-35
Abstract:
With the increasing penetration of distributed photovoltaics (PVs) in distribution networks (DNs), issues like voltage violations and fluctuations are becoming more prominent. This paper proposes a spatio-temporal adaptive voltage coordination control strategy involving multiple timescales and multi-device collaboration. Aiming at the heavy workload caused by the continuous sampling of real-time data in the whole domain, an intra-day innovative construction of intra-day minute-level optimization and real-time adaptive control double-layer control mode are introduced. Intra-day minute-level refinement of on-load tap changer (OLTC) and step voltage regulator (SVR) day-ahead scheduling plans to fully utilize OLTC and SVR voltage regulation capabilities and improve voltage quality is discussed. In real-time adaptive control, a regional autonomy mechanism based on the functional area voltage quality risk prognostication coefficient (VQRPC) is innovatively proposed, where each functional area intelligently selects the time period for real-time voltage regulation of distributed battery energy storage systems (DESSs) based on VQRPC value, in order to improve real-time voltage quality while reducing the data sampling workload. Aiming at the state of charge (SOC) management of DESS, a novel functional area DESS available capacity management mechanism is proposed to coordinate DESS output and improve SOC homogenization through dynamically updated power–capacity availability (PCA). And vine model threshold band (VMTB) and deviation optimization management (DOM) strategies based on functional area are innovatively proposed, where DOM optimizes DESS output through the VMTB to achieve voltage fluctuation suppression while optimizing DESS available capacity. Finally, the DESS and electric vehicle (EV) cooperative voltage regulation mechanism is constructed to optimize DESS capacity allocation, and the black-winged kite algorithm (BKA) is used to manage DESS output. The results of a simulation on a modified IEEE 33 system show that the proposed strategy reduces the voltage fluctuation rate of each functional area by an average of 36.49%, reduces the amount of data collection by an average of 68.31%, and increases the available capacity of DESS by 5.8%, under the premise of a 100% voltage qualification rate.
Keywords: distributed photovoltaics; distribution network; adaptive voltage regulation; functional area; state of charge (SOC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/8/2093/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/8/2093/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:8:p:2093-:d:1637434
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().