EconPapers    
Economics at your fingertips  
 

The Global Renewable Energy and Sectoral Electrification (GREaSE) Model for Rapid Energy Transition Scenarios

James Hopeward (), Richard Davis, Shannon O’Connor and Peter Akiki
Additional contact information
James Hopeward: Sustainable Infrastructure and Resource Management, University of South Australia, Adelaide, SA 5001, Australia
Richard Davis: Sustainable Infrastructure and Resource Management, University of South Australia, Adelaide, SA 5001, Australia
Shannon O’Connor: Sustainable Infrastructure and Resource Management, University of South Australia, Adelaide, SA 5001, Australia
Peter Akiki: Sustainable Infrastructure and Resource Management, University of South Australia, Adelaide, SA 5001, Australia

Energies, 2025, vol. 18, issue 9, 1-29

Abstract: Achieving the Paris Agreement’s 1.5 °C target requires a global-scale energy transition, reaching net-zero emissions by 2050. This transition demands not only a rapid expansion of renewable energy but also significant upfront energy investment, presenting potential trade-offs between near-term energy security and long-term sustainability. Assuming we cannot rely on as yet unproven negative emissions technology, reductions must be achieved directly, requiring fossil fuel phase-out, accelerated electrification, and substantial renewable infrastructure development. This study presents a detailed, transparent methodology for the creation of a simplified global energy system model designed to rapidly evaluate trade-offs between energy and climate policy, integrating energy investment, depletion, and saturation dynamics into energy transition scenarios. The model simulates energy supply and demand across major sectors, accounting for the upfront energy costs of deploying new renewable infrastructure and the dynamics of electrification in different demand sectors. Its transparent, user-controllable framework allows for rapid scenario adjustments based on variables such as population growth, per capita energy demand, rate and extent of electrification, and strength of climate policy. The primary purpose of this paper is to present the system modelling framework. However, we also present preliminary results from scenario analysis that point to two emergent risks: (1) prioritising energy security increases the likelihood of exceeding carbon budgets, while (2) stringent emissions reductions heighten the risk of energy shortages. Even under non-existent climate policy, fossil fuel depletion makes both the renewable transition and electrification of demand inevitable, though delayed transition leads to more severe emissions overshoot. These findings underscore the urgent need for demand reduction strategies and a more nuanced understanding of the energy investment required for decarbonisation. By offering a flexible scenario tool, this study contributes to informed public discourse and policy decisions on balancing energy security, emissions reduction, and climate resilience.

Keywords: energy transition; renewable infrastructure; electrification; energy return on investment (EROI); climate policy; energy scarcity; fossil fuel depletion; scenario modelling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/9/2205/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/9/2205/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:9:p:2205-:d:1643108

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-10
Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2205-:d:1643108