Numerical Investigation of Sheet-Gyroid Structure Modifications for Mixing Application in Renewable Energy Technologies
Martin Beer () and
Radim Rybár
Additional contact information
Martin Beer: Institute of Earth Sources, Faculty of Mining, Ecology, Process Technologies and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Radim Rybár: Institute of Earth Sources, Faculty of Mining, Ecology, Process Technologies and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Energies, 2025, vol. 18, issue 9, 1-18
Abstract:
The presented study focuses on evaluating the mixing properties of structures derived from the so-called sheet-gyroid geometry and their modifications as advanced mixing elements in renewable energy technologies. Using numerical simulations based on computational fluid dynamics (CFD), the hydrodynamic characteristics of the basic sheet-gyroid structure and five geometric modifications were analyzed under laminar flow conditions simulating the mixing of water and ethylene glycol. The evaluation was conducted using the parameters mixing index and performance index, which express the efficiency of fluid homogenization and its associated energy demands. The results show that all tested geometries significantly improve the degree of mixing compared to an empty channel. The highest concentration homogeneity and best energy efficiency were achieved by the twisted sheet-gyroid structure. This geometric modification exhibits the highest value of the performance index, confirming its ability to achieve excellent mixing with minimal pressure losses. The results of the study demonstrated that, despite similar hydraulic losses among some of the structures, their fluid mixing performance differs, which highlights the importance of targeted geometric design of sheet-gyroid structures. These findings are essential for the design of efficient mixers in technological applications where intensive mixing combined with minimal energy consumption is a critical factor.
Keywords: sheet-gyroid; fluids mixing; mixing index; CFD analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/9/2265/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/9/2265/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:9:p:2265-:d:1645558
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().