Advancements in Inorganic Hole-Transport Materials for Perovskite Solar Cells: A Comparative Review
Johannes Zanoxolo Mbese ()
Additional contact information
Johannes Zanoxolo Mbese: School of Pure & Applied Chemistry, Department of Chemical and Earth Sciences, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
Energies, 2025, vol. 18, issue 9, 1-13
Abstract:
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) such as nickel oxide (NiO x ) have been developed and received considerable attention for use in OPVs due to their excellent thermal stability, low-cost materials, and compatibility with scalable deposition methods. Here, we summarize the recent progress on inorganic HTMs for PSCs, which can be divided into three categories: NiO x , copper-based compounds, and emerging new alternatives. The deposition method (sputtering, atomic layer deposition, or a solution-based technique) is one of the most important factors affecting the performance and stability of PSCs. Finally, we review interfacial engineering strategies, such as surface modifications and doping, which can enhance charge transport and extend a device’s lifetime. We also balance the benefits of inorganic HTMs against the key challenges in advancing to commercialization, namely interior defects and environmental degradation. In this review, we summarize the recent progress and challenges toward developing cost-efficient and stable PSCs with inorganic HTMs and provide insights into the future development of these materials.
Keywords: perovskite solar cells; Spiro-OMETAD; device functionality; advancements (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/9/2374/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/9/2374/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:9:p:2374-:d:1650278
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().