Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach
Hongwen He,
Rui Xiong and
Jinxin Fan
Additional contact information
Hongwen He: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing, 100081, China
Rui Xiong: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing, 100081, China
Jinxin Fan: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing, 100081, China
Energies, 2011, vol. 4, issue 4, 1-17
Abstract:
To improve the use of lithium-ion batteries in electric vehicle (EV) applications, evaluations and comparisons of different equivalent circuit models are presented in this paper. Based on an analysis of the traditional lithium-ion battery equivalent circuit models such as the Rint, RC, Thevenin and PNGV models, an improved Thevenin model, named dual polarization (DP) model, is put forward by adding an extra RC to simulate the electrochemical polarization and concentration polarization separately. The model parameters are identified with a genetic algorithm, which is used to find the optimal time constant of the model, and the experimental data from a Hybrid Pulse Power Characterization (HPPC) test on a LiMn 2 O 4 battery module. Evaluations on the five models are carried out from the point of view of the dynamic performance and the state of charge (SoC) estimation. The dynamic performances of the five models are obtained by conducting the Dynamic Stress Test (DST) and the accuracy of SoC estimation with the Robust Extended Kalman Filter (REKF) approach is determined by performing a Federal Urban Driving Schedules (FUDS) experiment. By comparison, the DP model has the best dynamic performance and provides the most accurate SoC estimation. Finally, sensitivity of the different SoC initial values is investigated based on the accuracy of SoC estimation with the REKF approach based on the DP model. It is clear that the errors resulting from the SoC initial value are significantly reduced and the true SoC is convergent within an acceptable error.
Keywords: equivalent circuit model; SoC estimation; lithium-ion battery; electric vehicles; experiment (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (127)
Downloads: (external link)
https://www.mdpi.com/1996-1073/4/4/582/pdf (application/pdf)
https://www.mdpi.com/1996-1073/4/4/582/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:4:y:2011:i:4:p:582-598:d:11864
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().