Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests
Hiroshi Koseki
Additional contact information
Hiroshi Koseki: National Research Institute of Fire and Disaster, 4-35-3 Jindaiji-Higashi, Chofu, Tokyo 182-8508, Japan
Energies, 2011, vol. 4, issue 4, 1-12
Abstract:
Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF), wood chips, coal-wood mixtures, etc . However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materials and proposed evaluation methods for these new developing materials in Japan are introduced, which are consistent with measurements using highly sensitive calorimeters such as C80, or TAM, and gas emission tests. The highly sensitive calorimeters can detect small heat generation between room temperature and 80 °C, due to fermentation or other causes. This heat generation sometimes initiates real fires, and also produces combustible gases which can explode if fuel is stored in silos or indoor storage facilities.
Keywords: biomass fuel; thermal analysis; high sensitive calorimeter; gas emission test (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/4/4/616/pdf (application/pdf)
https://www.mdpi.com/1996-1073/4/4/616/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:4:y:2011:i:4:p:616-627:d:12096
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().