EconPapers    
Economics at your fingertips  
 

A Carbon Footprint of an Office Building

Miimu Airaksinen and Pellervo Matilainen
Additional contact information
Miimu Airaksinen: VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
Pellervo Matilainen: Skanska M&E Finland Oy, P.O. Box 114, FI-00101 Helsinki, Finland

Energies, 2011, vol. 4, issue 8, 1-14

Abstract: Current office buildings are becoming more and more energy efficient. In particular the importance of heating is decreasing, but the share of electricity use is increasing. When the CO 2 equivalent emissions are considered, the CO 2 emissions from embodied energy make up an important share of the total, indicating that the building materials have a high importance which is often ignored when only the energy efficiency of running the building is considered. This paper studies a new office building in design phase and offers different alternatives to influence building energy consumption, CO 2 equivalent emissions from embodied energy from building materials and CO 2 equivalent emissions from energy use and how their relationships should be treated. In addition this paper studies how we should weight the primary energy use and the CO 2 equivalent emissions of different design options. The results showed that the reduction of energy use reduces both the primary energy use and CO 2 equivalent emissions. Especially the reduction of electricity use has a high importance for both primary energy use and CO 2 emissions when fossil fuels are used. The lowest CO 2 equivalent emissions were achieved when bio-based, renewable energies or nuclear power was used to supply energy for the office building. Evidently then the share of CO 2 equivalent emissions from the embodied energy of building materials and products became the dominant source of CO 2 equivalent emissions. The lowest primary energy was achieved when bio-based local heating or renewable energies, in addition to district cooling, were used. The highest primary energy was for the nuclear power option.

Keywords: energy efficiency; CO 2 emissions from energy use and materials; primary energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.mdpi.com/1996-1073/4/8/1197/pdf (application/pdf)
https://www.mdpi.com/1996-1073/4/8/1197/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:4:y:2011:i:8:p:1197-1210:d:13622

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:4:y:2011:i:8:p:1197-1210:d:13622