A Carbon Footprint of an Office Building
Miimu Airaksinen and
Pellervo Matilainen
Additional contact information
Miimu Airaksinen: VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
Pellervo Matilainen: Skanska M&E Finland Oy, P.O. Box 114, FI-00101 Helsinki, Finland
Energies, 2011, vol. 4, issue 8, 1-14
Abstract:
Current office buildings are becoming more and more energy efficient. In particular the importance of heating is decreasing, but the share of electricity use is increasing. When the CO 2 equivalent emissions are considered, the CO 2 emissions from embodied energy make up an important share of the total, indicating that the building materials have a high importance which is often ignored when only the energy efficiency of running the building is considered. This paper studies a new office building in design phase and offers different alternatives to influence building energy consumption, CO 2 equivalent emissions from embodied energy from building materials and CO 2 equivalent emissions from energy use and how their relationships should be treated. In addition this paper studies how we should weight the primary energy use and the CO 2 equivalent emissions of different design options. The results showed that the reduction of energy use reduces both the primary energy use and CO 2 equivalent emissions. Especially the reduction of electricity use has a high importance for both primary energy use and CO 2 emissions when fossil fuels are used. The lowest CO 2 equivalent emissions were achieved when bio-based, renewable energies or nuclear power was used to supply energy for the office building. Evidently then the share of CO 2 equivalent emissions from the embodied energy of building materials and products became the dominant source of CO 2 equivalent emissions. The lowest primary energy was achieved when bio-based local heating or renewable energies, in addition to district cooling, were used. The highest primary energy was for the nuclear power option.
Keywords: energy efficiency; CO 2 emissions from energy use and materials; primary energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.mdpi.com/1996-1073/4/8/1197/pdf (application/pdf)
https://www.mdpi.com/1996-1073/4/8/1197/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:4:y:2011:i:8:p:1197-1210:d:13622
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().