Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications
Ping Zheng,
Qian Wu,
Jing Zhao,
Chengde Tong,
Jingang Bai and
Quanbin Zhao
Additional contact information
Ping Zheng: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Qian Wu: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Jing Zhao: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Chengde Tong: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Jingang Bai: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Quanbin Zhao: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
Energies, 2012, vol. 5, issue 1, 1-19
Abstract:
A new type of brushless double rotor machine (BDRM) is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM) systems, which are promising for power-split hybrid electric vehicle (HEV) applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM) model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed.
Keywords: brushless; double rotor machine; hybrid electric vehicle; speed adjustment; claw-pole rotor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/5/1/119/pdf (application/pdf)
https://www.mdpi.com/1996-1073/5/1/119/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:5:y:2012:i:1:p:119-137:d:15762
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().