A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network
Bangzhu Zhu
Additional contact information
Bangzhu Zhu: School of Economics and Management, Wuyi University, Jiangmen 529020, Guangdong, China
Energies, 2012, vol. 5, issue 2, 1-16
Abstract:
Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD), genetic algorithm (GA) and artificial neural network (ANN) is proposed to forecast carbon price. Firstly, the proposed model uses EMD to decompose carbon price data into several intrinsic mode functions (IMFs) and one residue. Then, the IMFs and residue are composed into a high frequency component, a low frequency component and a trend component which have similar frequency characteristics, simple components and strong regularity using the fine-to-coarse reconstruction algorithm. Finally, those three components are predicted using an ANN trained by GA, i.e. , a GAANN model, and the final forecasting results can be obtained by the sum of these three forecasting results. For verification and testing, two main carbon future prices with different maturity in the European Climate Exchange (ECX) are used to test the effectiveness of the proposed multiscale ensemble forecasting model. Empirical results obtained demonstrate that the proposed multiscale ensemble forecasting model can outperform the single random walk (RW), ARIMA, ANN and GAANN models without EMD preprocessing and the ensemble ARIMA model with EMD preprocessing.
Keywords: carbon price; multiscale prediction; empirical mode decomposition; artificial neural network; genetic algorithm; partial autocorrelation function (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
https://www.mdpi.com/1996-1073/5/2/355/pdf (application/pdf)
https://www.mdpi.com/1996-1073/5/2/355/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:5:y:2012:i:2:p:355-370:d:16185
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().