The Effects of Particle Size, Different Corn Stover Components, and Gas Residence Time on Torrefaction of Corn Stover
Dorde Medic,
Matthew Darr,
Ajay Shah and
Sarah Rahn
Additional contact information
Dorde Medic: Department of Agricultural and Biosystems Engineering, Iowa State University, 100 Davidson Hall, Ames, IA 50011, USA
Matthew Darr: Department of Agricultural and Biosystems Engineering, Iowa State University, 100 Davidson Hall, Ames, IA 50011, USA
Ajay Shah: Department of Agricultural and Biosystems Engineering, Iowa State University, 100 Davidson Hall, Ames, IA 50011, USA
Sarah Rahn: Department of Agricultural and Biosystems Engineering, Iowa State University, 100 Davidson Hall, Ames, IA 50011, USA
Energies, 2012, vol. 5, issue 4, 1-16
Abstract:
Large scale biofuel production will be possible only if significant quantities of biomass feedstock can be stored, transported, and processed in an economic and sustainable manner. Torrefaction has the potential to significantly reduce the cost of transportation, storage, and downstream processing through the improvement of physical and chemical characteristics of biomass. The main objective of this study was to investigate the effects of particle size, plant components, and gas residence time on the production of torrefied corn ( Zea mays ) stover. Different particle sizes included 0.85 mm and 20 mm. Different stover components included ground corn stover, whole corn stalk, stalk shell and pith, and corn cob shell. Three different purge gas residence times were employed to assess the effects of interaction of volatiles and torrefied biomass. Elemental analyses were performed on all of the samples, and the data obtained was used to estimate the energy contents and energy yields of different torrefied biomass samples. Particle density, elemental composition, and fiber composition of raw biomass fractions were also determined. Stalk pith torrefied at 280 °C and stalk shell torrefied at 250 °C had highest and lowest dry matter loss, of about 44% and 13%, respectively. Stalk pith torrefied at 250 °C had lowest energy density of about 18–18.5 MJ/kg, while cob shell torrefied at 280 °C had the highest energy density of about 21.5 MJ/kg. The lowest energy yield, at 59%, was recorded for stalk pith torrefied at 280 °C, whereas cob and stalk shell torrefied at 250 °C had highest energy yield at 85%. These differences were a consequence of the differences in particle densities, hemicellulose quantities, and chemical properties of the original biomass samples. Gas residence time did not have a significant effect on the aforementioned parameters.
Keywords: torrefaction; corn stover; particle size; gas residence time (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.mdpi.com/1996-1073/5/4/1199/pdf (application/pdf)
https://www.mdpi.com/1996-1073/5/4/1199/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:5:y:2012:i:4:p:1199-1214:d:17332
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().