Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids
Eduardo Valsera-Naranjo,
Andreas Sumper,
Roberto Villafafila-Robles and
David Martínez-Vicente
Additional contact information
Eduardo Valsera-Naranjo: Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
Andreas Sumper: Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
Roberto Villafafila-Robles: Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
David Martínez-Vicente: Centre of Technological Innovation in Static Converters and Drives, Departament of Electrical Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, College of Industrial Engineering of Barcelona, Carrer Comte d’Urgell, 187-08036 Barcelona, Spain
Energies, 2012, vol. 5, issue 5, 1-29
Abstract:
This paper describes a grid impact analysis of charging electric vehicles (EV) using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the battery characteristics; and, finally, the recharge control strategies were taken into account. Once these main features were established, a statistical probabilistic model for the household electrical demand and for the EV charging parameters was determined. Finally, with these probabilistic models, the Monte Carlo analysis was performed within the established scenario in order to study the lines’ and the transformers’ loading levels. The results show that an accurate model for the battery gives a more precise estimation about the impact on the grid. Additionally, mobility patterns have been proved to be some of the most important key aspects for these type of studies.
Keywords: electrical vehicles; distribution grids; impact study (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.mdpi.com/1996-1073/5/5/1503/pdf (application/pdf)
https://www.mdpi.com/1996-1073/5/5/1503/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:5:y:2012:i:5:p:1503-1531:d:17829
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().