Decision Support for the Construction of Farm-Scale Biogas Digesters in Developing Countries with Cold Seasons
Charlotte Rennuit and
Sven Gjedde Sommer
Additional contact information
Charlotte Rennuit: Biotechnology and Environmental Engineering, Institute of Chemical Engineering, Faculty of Engineering, University of Southern Denmark (SDU), Odense M 5230, Denmark
Sven Gjedde Sommer: Biotechnology and Environmental Engineering, Institute of Chemical Engineering, Faculty of Engineering, University of Southern Denmark (SDU), Odense M 5230, Denmark
Energies, 2013, vol. 6, issue 10, 1-19
Abstract:
Biogas production is a clean renewable energy source that can improve lives in developing countries. However, winter temperatures in some areas are too low to enable enough biogas production in small unheated digesters to meet the energy requirements of households. Low-cost, high yield reactors adapted to the local climate are needed in those situations. A decision-support model was developed to assist in the design of biogas reactors capable of meeting households’ year-round energy needs. Monthly biogas production relative to household energy needs was calculated for the scenario of suburban Hanoi, Vietnam. Calculations included pig number, slurry (manure water mixture) dilution, retention time and biogas/solar heating. Although using biogas to heat the digester increased biogas production, it did not lead to an energy surplus, particularly with the 1:9 slurry dilution rate commonly used on pig farms. However, at a 1:3 slurry dilution, the use of solar heating to provide 90% and biogas 10% of the heat required to heat the digester to 35 °C improved the biogas production by 50% compared to psychrophilic production. The energy needs of an average five-person family throughout the year required 17 fattening pigs. This model can establish the best solution for producing sufficient energy throughout the year.
Keywords: anaerobic digestion; developing countries; psychrophilic; heating; methane production; mathematical modeling; mesophilic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/6/10/5314/pdf (application/pdf)
https://www.mdpi.com/1996-1073/6/10/5314/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:6:y:2013:i:10:p:5314-5332:d:29669
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().