EconPapers    
Economics at your fingertips  
 

Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine

Chih-Yung Huang, Cheng-Kang Hu, Chih-Jie Yu and Cheng-Kuo Sung
Additional contact information
Chih-Yung Huang: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Cheng-Kang Hu: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Chih-Jie Yu: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Cheng-Kuo Sung: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

Energies, 2013, vol. 6, issue 3, 1-15

Abstract: This study presents an experimental investigation of a piston engine driven by compressed air. The compressed air engine was a modified 100 cm 3 internal combustion engine obtained from a motorcycle manufacturer. The experiments in this study used a test bench to examine the power performance and pressure/temperature variations of the compressed air engine at pressures ranging from 5 to 9 bar (absolute pressure). The engine was modified from a 4-stroke to a 2-stroke engine using a cam system driven by a crankshaft and the intake and exhaust valves have a small lift due to this modification. The highest power output of 0.95 kW was obtained at 9 bar and 1320 rpm. The highest torque of 9.99 N·m occurred at the same pressure, but at 465 rpm. The pressure-volume (P-V) diagram shows that cylinder pressure gradually increases after the intake valve opens because of the limited lift movement of the intake valve. Similar situations occurred during the exhaust process, restricting the power output of the compressed air engine. The pressure and temperature variation of the air at engine inlet and outlet were recorded during the experiment. The outlet pressure increased from 1.5 bar at 500 rpm to 2.25 bar at 2000 rpm, showing the potential of recycling the compressed air energy by attaching additional cylinders (split-cycle engine). A temperature decrease (from room temperature to 17 °C) inside the cylinder was observed. It should be noted that pressures higher than that currently employed can result in lower temperatures and this can cause poor lubrication and sealing issues. The current design of a compressed air engine, which uses a conventional cam mechanism for intake and exhaust, has limited lift movement during operation, and has a restricted flow rate and power output. Fast valve actuation and a large lift are essential for improving the performance of the current compressed air engine. This study presents a power output examination with the pressure and temperature measurements of a piston-type compressed air engine to be installed in compact vehicles as the main or auxiliary power system.

Keywords: compressed air engine; experimental investigation; power performance; pressure; temperature (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/6/3/1731/pdf (application/pdf)
https://www.mdpi.com/1996-1073/6/3/1731/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:6:y:2013:i:3:p:1731-1745:d:24213

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1731-1745:d:24213