Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept
Andrew Shires
Additional contact information
Andrew Shires: School of Engineering, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
Energies, 2013, vol. 6, issue 5, 1-20
Abstract:
There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.
Keywords: vertical axis wind turbine (VAWT); blade element momentum (BEM); aerodynamic model; dynamic stall (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.mdpi.com/1996-1073/6/5/2501/pdf (application/pdf)
https://www.mdpi.com/1996-1073/6/5/2501/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:6:y:2013:i:5:p:2501-2520:d:25732
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().