Middleware Architectures for the Smart Grid: Survey and Challenges in the Foreseeable Future
José-Fernán Martínez,
Jesús Rodríguez-Molina,
Pedro Castillejo and
Rubén De Diego
Additional contact information
José-Fernán Martínez: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra Valencia, Km 7, 28031 Madrid, Spain
Jesús Rodríguez-Molina: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra Valencia, Km 7, 28031 Madrid, Spain
Pedro Castillejo: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra Valencia, Km 7, 28031 Madrid, Spain
Rubén De Diego: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra Valencia, Km 7, 28031 Madrid, Spain
Energies, 2013, vol. 6, issue 7, 1-29
Abstract:
The traditional power grid is just a one-way supplier that gets no feedback data about the energy delivered, what tariffs could be the most suitable ones for customers, the shifting daily needs of electricity in a facility, etc. Therefore, it is only natural that efforts are being invested in improving power grid behavior and turning it into a Smart Grid. However, to this end, several components have to be either upgraded or created from scratch. Among the new components required, middleware appears as a critical one, for it will abstract all the diversity of the used devices for power transmission (smart meters, embedded systems, etc. ) and will provide the application layer with a homogeneous interface involving power production and consumption management data that were not able to be provided before. Additionally, middleware is expected to guarantee that updates to the current metering infrastructure (changes in service or hardware availability) or any added legacy measuring appliance will get acknowledged for any future request. Finally, semantic features are of major importance to tackle scalability and interoperability issues. A survey on the most prominent middleware architectures for Smart Grids is presented in this paper, along with an evaluation of their features and their strong points and weaknesses.
Keywords: middleware; Smart Grid; survey; state of the art (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/6/7/3593/pdf (application/pdf)
https://www.mdpi.com/1996-1073/6/7/3593/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:6:y:2013:i:7:p:3593-3621:d:27409
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().