Naturally-Forced Slug Flow Expander for Application in a Waste-Heat Recovery Cycle
Ben De Witt and
Ron Hugo
Additional contact information
Ben De Witt: Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
Ron Hugo: Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
Energies, 2014, vol. 7, issue 11, 1-22
Abstract:
This paper investigates a slug-flow expander (SFE) for conversion of high-pressure gas/vapor into kinetic energy of liquid slugs. The energy transfer from high-pressure to kinetic energy is quantified using thrust plate measurements. Non-dimensional thrust data is used to quantify performance by normalizing measured thrust by thrust for the same water flow rate at zero air flow rate. A total of 13 expander configurations are investigated and geometries with the shortest cavity length and the smallest exit diameter are found to result in the largest non-dimensional thrust increase. Results show that thrust augmentation increases with the initiation of slug flow in the SFE. The analysis performed on the normalized thrust readings suggested that as the water and air flow were increased to critical conditions, the liquid slugs produced by the SFE augmented the thrust measurements. The final performance evaluation was based on linear regression of the normalized thrust measurements where slug flow was generated for each SFE architecture. Greater magnitudes of the slope from the linear regression indicated the propensity of the SFE to augment thrust. This analysis confirmed that for the SFE configurations over the range of values investigated, the SFE increased thrust up to three times its original value at no air flow. Given the inherent multiphase nature of the slug-flow expander, application to systems involving expansion of wetting fluids (water as part of a waste-heat recovery system) or air with water droplet formation (as part of a compressed-air energy storage system) could be considered.
Keywords: waste-heat recovery; compressed air energy storage; expander (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/7/11/7223/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/11/7223/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:11:p:7223-7244:d:42155
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().