Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications
Jaeshin Yi,
Boram Koo and
Chee Burm Shin
Additional contact information
Jaeshin Yi: Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Boram Koo: Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Chee Burm Shin: Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Energies, 2014, vol. 7, issue 11, 1-16
Abstract:
This paper reports a modeling methodology to predict the effects of operating conditions on the thermal behavior of a lithium-ion battery (LIB) module. The potential and current density distributions on the electrodes of an LIB cell are predicted as a function of discharge time based on the principle of charge conservation. By using the modeling results of the potential and current density distributions of the LIB cell, the non-uniform distribution of the heat generation rate in a single LIB cell within the module is calculated. Based on the heat generation rate in the single LIB cell determined as a function of the position on the electrode and time, a three-dimensional thermal modeling of an LIB module is performed to calculate the three-dimensional velocity, pressure, and temperature distributions within the LIB module as a function of time at various operating conditions. Thermal modeling of an LIB module is validated by the comparison between the experimental measurements and the modeling results. The effect of the cooling condition of the LIB module on the temperature rise of the LIB cells within the module and the uniformity of the distribution of the cell temperatures are analyzed quantitatively based on the modeling results.
Keywords: lithium-ion battery; battery module; thermal model; thermal management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/7/11/7586/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/11/7586/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:11:p:7586-7601:d:42462
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().