Analysis of the Energy Balance of Shale Gas Development
Hiroaki Yaritani and
Jun Matsushima
Additional contact information
Hiroaki Yaritani: Frontier Research Center for Energy and Resources, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Jun Matsushima: Frontier Research Center for Energy and Resources, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Energies, 2014, vol. 7, issue 4, 1-21
Abstract:
Interest has rapidly grown in the use of unconventional resources to compensate for depletion of conventional hydrocarbon resources (“easy hydrocarbon”) that are produced at relatively low cost from oil and gas fields with large proven reserves. When one wants to ensure the prospects for development of unconventional resources that are potentially vast in terms of their energy potential, it is essential to determine the quality of that energy. Here we consider the development of shale gas, an unconventional energy resource of particularly strong interest of late, through analysis of its energy return on investment (EROI), a key indicator for qualitative assessment of energy resources. We used a Monte Carlo approach for the carbon footprint of U.S. operations in shale gas development to estimate expected ranges of EROI values by incorporating parameter variability. We obtained an EROI of between 13 and 23, with a mean of approximately 17 at the start of the pipeline. When we incorporated all the costs required to bring shale gas to the consumer, the mean value of EROI drops from about 17 at the start of the pipeline to 12 when delivered to the consumer. The shale gas EROI values estimated in the present study are in the initial stage of shale gas exploitation where the quality of that resource may be considerably higher than the mean and thus the careful and continuous investigation of change in EROI is needed, especially as production moves off the initial “sweet spots”.
Keywords: shale gas; energy return on investment (EROI); unconventional energy resource; carbon footprint (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.mdpi.com/1996-1073/7/4/2207/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/4/2207/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:4:p:2207-2227:d:34842
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().