EconPapers    
Economics at your fingertips  
 

Wetland Changes and Their Responses to Climate Change in the “Three-River Headwaters” Region of China since the 1990s

Laga Tong, Xinliang Xu, Ying Fu and Shuang Li
Additional contact information
Laga Tong: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Xinliang Xu: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Ying Fu: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Shuang Li: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Energies, 2014, vol. 7, issue 4, 1-20

Abstract: The wetland ecosystem in the “Three-River Headwaters” (TRH) region plays an irreplaceable role in water source conservation, run-off adjustment and biodiversity maintenance. In recent years, assessment of wetland resources affected by climate changes has aroused enormous attention, since it can further protect wetland resources and provide a scientific basis for decision makers. In this study, wetland changes and its response to climate changes in the TRH region from the early 1990s to 2012 were analyzed by remote sensing (RS) image interpretation and climate change trend analysis. The results showed that wetlands occupied 6.3% of the total land area in 2012, and swamps, streams & rivers and lakes were the dominant wetland types in the TRH region. Since the early 1990s, wetlands have undergone great changes, and total wetland area increased by 260.57 km 2 (1.17%). Lakes, reservoir & ponds took on continuous increasing trend, but swamps, streams & rivers had a continuous decreasing trend. On the other hand, the wetland area in the Yangtze River basin showed an overall increasing trend, while in the Yellow River and Langcang River basins, it decreased in general. The climate turned from Warm-Dry to Warm-Wet. The average temperature and precipitation increased by 0.91 °C and 101.99 mm, respectively, from 1990 to 2012, and the average humidity index ( HI ) increased by 0.06 and showing an upward trend and a shifting of the dividing line towards the northwest in both the areas of semi-humid and semi-arid zone. The correlation analysis of wetland changes with meteorological factors from 1990 to 2012 indicated that the regional humidity differences and the interannual variation trend, caused by the change of precipitation and evaporation, was the main driving factor for the dynamic variation of wetland change in the TRH region. In the general, the increase of HI in the THR region since the 1990s, especially in the western TRH region, contributed to wetland increase continuously. The conclusions of this study will provide some scientific references for the management and protection of wetlands in the TRH region, especially for restoration, reconstruction and conservation of degradation wetland.

Keywords: wetland; “Three-River Headwaters” (THR) region; climate change; remote sensing (RS); trend analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/7/4/2515/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/4/2515/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:4:p:2515-2534:d:35342

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2515-2534:d:35342