A Semantic Middleware Architecture Focused on Data and Heterogeneity Management within the Smart Grid
Rubén De Diego,
José-Fernán Martínez,
Jesús Rodríguez-Molina and
Alexandra Cuerva
Additional contact information
Rubén De Diego: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra. Valencia, Km 7, Madrid 28031, Spain
José-Fernán Martínez: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra. Valencia, Km 7, Madrid 28031, Spain
Jesús Rodríguez-Molina: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra. Valencia, Km 7, Madrid 28031, Spain
Alexandra Cuerva: Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad), Campus Sur UPM, Ctra. Valencia, Km 7, Madrid 28031, Spain
Energies, 2014, vol. 7, issue 9, 1-42
Abstract:
There is an increasing tendency of turning the current power grid, essentially unaware of variations in electricity demand and scattered energy sources, into something capable of bringing a degree of intelligence by using tools strongly related to information and communication technologies, thus turning into the so-called Smart Grid. In fact, it could be considered that the Smart Grid is an extensive smart system that spreads throughout any area where power is required, providing a significant optimization in energy generation, storage and consumption. However, the information that must be treated to accomplish these tasks is challenging both in terms of complexity (semantic features, distributed systems, suitable hardware) and quantity (consumption data, generation data, forecasting functionalities, service reporting), since the different energy beneficiaries are prone to be heterogeneous, as the nature of their own activities is. This paper presents a proposal on how to deal with these issues by using a semantic middleware architecture that integrates different components focused on specific tasks, and how it is used to handle information at every level and satisfy end user requests.
Keywords: middleware; smart grid; semantics; Enterprise Service Bus (ESB); energy optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/7/9/5953/pdf (application/pdf)
https://www.mdpi.com/1996-1073/7/9/5953/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:7:y:2014:i:9:p:5953-5994:d:40066
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().