Analysis and Optimization Design of a Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm
Myeong Jin Ko
Additional contact information
Myeong Jin Ko: Urban Development Institute, Incheon National University, Incheon 406-772, Korea
Energies, 2015, vol. 8, issue 10, 1-24
Abstract:
This paper presents an optimization method to design a solar water heating (SWH) system based on life cycle cost (LCC). A genetic algorithm is employed to optimize its configuration and sizing as the optimization technique. To ensure that the optimal solution obtained from the proposed method is a practical design, three constraint conditions, including the energy balance, solar fraction, and available space to install solar collectors, have been set. In addition, the real devices available in the marketplace are considered in the optimization process that searches for optimal configuration and sizing, which is represented by the type and number of each component. By using the proposed method, a SWH system in an office building, South Korea has been designed and optimized. It is observed that a low solar fraction does not always present a decrease in the LCC. A trade-off between the equipment cost and the energy cost results in an optimal design of the SWH system that yields the minimum LCC.
Keywords: solar water heating system; genetic algorithm; optimization design; life cycle cost (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://www.mdpi.com/1996-1073/8/10/11380/pdf (application/pdf)
https://www.mdpi.com/1996-1073/8/10/11380/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:8:y:2015:i:10:p:11380-11403:d:57019
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().