EconPapers    
Economics at your fingertips  
 

Investigation of Fault Permeability in Sands with Different Mineral Compositions (Evaluation of Gas Hydrate Reservoir)

Sho Kimura, Hiroaki Kaneko, Takuma Ito and Hideki Minagawa
Additional contact information
Sho Kimura: Reservoir Modeling Team, Methane Hydrate Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Hiroaki Kaneko: Reservoir Modeling Team, Methane Hydrate Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Takuma Ito: Reservoir Modeling Team, Methane Hydrate Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Hideki Minagawa: Reservoir Modeling Team, Methane Hydrate Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan

Energies, 2015, vol. 8, issue 7, 1-22

Abstract: We used a ring-shear apparatus to examine the perpendicular permeability of sands with different mineral compositions to evaluate fault behavior around gas hydrate reservoirs. The effect of effective normal stress on the permeability of two sand types was investigated under constant effective normal stresses of 0.5–8.0 MPa. Although Toyoura sand and silica sand No. 7 mainly comprise quartz, silica sand No. 7 contains small amounts of feldspar. For Toyoura sand, the permeability after ring-shearing dramatically decreased with increasing effective normal stress up to 3.0 MPa, then gradually decreased for stresses over 3.0 MPa, whereas the permeability after ring-shearing of silica sand No. 7 rapidly decreased with increasing effective normal stress up to 2.0 MPa. Although the relationships between the permeability after ring-shearing and effective normal stress for both sands could be expressed by exponential equations up to 3.0 MPa, a more gradual change in slope was shown for Toyoura sand. The permeabilities of both sands were almost equal for effective normal stresses over 3.0 MPa. The mineralogical properties of the small amount of feldspar in the sample indicate that both mineralogy and original grain size distribution affect the fault permeability and shear zone formation.

Keywords: permeability; fault; porosity; normal stress; mineralogy; grain size; ring-shear (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/8/7/7202/pdf (application/pdf)
https://www.mdpi.com/1996-1073/8/7/7202/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:8:y:2015:i:7:p:7202-7223:d:52693

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7202-7223:d:52693