Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques
Shuang Rong,
Zhimin Li and
Weixing Li
Additional contact information
Shuang Rong: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
Zhimin Li: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
Weixing Li: Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
Energies, 2015, vol. 8, issue 8, 1-17
Abstract:
In the provinces of north China, combined heat and electric power generations (CHP) are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED) approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.
Keywords: power system; heat system; wind power; combined heat and electric power generation; thermal-electric decoupling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.mdpi.com/1996-1073/8/8/8613/pdf (application/pdf)
https://www.mdpi.com/1996-1073/8/8/8613/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:8:y:2015:i:8:p:8613-8629:d:54172
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().