Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing
Francesc Pozo and
Yolanda Vidal
Additional contact information
Francesc Pozo: Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (EUETIB), Universitat Politècnica de Catalunya (UPC), Comte d’Urgell, 187, Barcelona 08036, Spain
Yolanda Vidal: Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (EUETIB), Universitat Politècnica de Catalunya (UPC), Comte d’Urgell, 187, Barcelona 08036, Spain
Energies, 2015, vol. 9, issue 1, 1-20
Abstract:
This paper addresses the problem of online fault detection of an advanced wind turbine benchmark under actuators (pitch and torque) and sensors (pitch angle measurement) faults of different type: fixed value, gain factor, offset and changed dynamics. The fault detection scheme starts by computing the baseline principal component analysis (PCA) model from the healthy or undamaged wind turbine. Subsequently, when the structure is inspected or supervised, new measurements are obtained are projected into the baseline PCA model. When both sets of data—the baseline and the data from the current wind turbine—are compared, a statistical hypothesis testing is used to make a decision on whether or not the wind turbine presents some damage, fault or misbehavior. The effectiveness of the proposed fault-detection scheme is illustrated by numerical simulations on a well-known large offshore wind turbine in the presence of wind turbulence and realistic fault scenarios. The obtained results demonstrate that the proposed strategy provides and early fault identification, thereby giving the operators sufficient time to make more informed decisions regarding the maintenance of their machines.
Keywords: wind turbine; fault detection; principal component analysis; statistical hypothesis testing; FAST (Fatigue, Aerodynamics, Structures and Turbulence) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/1/3/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/1/3/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2015:i:1:p:3-:d:61118
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().