EconPapers    
Economics at your fingertips  
 

Droop Control Design of Multi-VSC Systems for Offshore Networks to Integrate Wind Energy

Muhammad Raza, Kevin Schönleber and Oriol Gomis-Bellmunt
Additional contact information
Muhammad Raza: Departament d’Enginyeria Electrica, Centre d’Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya, BarcelonaTECH. ETS d’Enginyeria Industrial de Barcelona, Barcelona 08028, Spain
Kevin Schönleber: Electrical Systems, GE Renewable Energy, Barcelona 08005, Spain
Oriol Gomis-Bellmunt: Departament d’Enginyeria Electrica, Centre d’Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya, BarcelonaTECH. ETS d’Enginyeria Industrial de Barcelona, Barcelona 08028, Spain

Energies, 2016, vol. 9, issue 10, 1-16

Abstract: This research envisages the droop control design of multi voltage source converter systems for offshore networks to integrate wind power plant with the grids. An offshore AC network is formulated by connecting several nearby wind power plants together with AC cables. The net energy in the network is transferred to onshore using voltage source high voltage direct current (VSC-HVDC) transmissionsystems. In the proposed configuration, an offshore network is energized by more than one VSC-HVDC system, hereby providing redundancy to continue operation in case of failure in one of the HVDC transmission lines. The power distribution between VSC-HVDC systems is done using a droop control scheme. Frequency droop is implemented to share active power, and voltage droop is implemented to share reactive power. Furthermore, a method of calculating droop gains according to the contribution factor of each converter is presented. The system has been analyzed to evaluate the voltage profile of the network affected by the droop control. Nonlinear dynamic simulation has been performed for the verification of the control principle.

Keywords: droop control; dynamic analysis; frequency control; offshore wind power plant; power sharing; voltage control; VSC-HVDC system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/10/826/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/10/826/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:10:p:826-:d:80491

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:826-:d:80491