EconPapers    
Economics at your fingertips  
 

An Adaptive Speed Control Approach for DC Shunt Motors

Ruben Tapia-Olvera, Francisco Beltran-Carbajal, Omar Aguilar-Mejia and Antonio Valderrabano-Gonzalez
Additional contact information
Ruben Tapia-Olvera: Departamento de Ingeniería Eléctrica, Universidad Nacional Autónoma de México, Av. Universidad 3000, Cd. Universitaria, Delegación Coyoacán, C.P. 04510 Mexico City, Mexico
Francisco Beltran-Carbajal: Departamento de Energía, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, C.P. 02200 Mexico City, Mexico
Omar Aguilar-Mejia: Departamento de Ingeniería, Universidad Politécnica de Tulancingo, Ingenierías No. 100. Col. Huapalcalco, C.P. 43629 Tulancingo, Mexico
Antonio Valderrabano-Gonzalez: Facultad de Ingeniería, Universidad Panamericana (Campus Guadalajara), Prolongación Calzada Circunvalación Poniente 49, C.P. 45010 Zapopan, Mexico

Energies, 2016, vol. 9, issue 11, 1-16

Abstract: A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

Keywords: DC shunt motors; adaptive speed control; model-free control; neural networks (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/11/961/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/11/961/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:11:p:961-:d:83055

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:961-:d:83055